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TRACK RECONSTRUCTION OF NORMAL MUON DECAYS IN THE
LAMPF TPC: ONE WORKING SCHEME

R. J. McKee
Los Alamos National Laborutory, Los Alamos, NM. 87544

ABSTRACT

A working schene for track recomnstruzction of normal muon
decays in the LAMPF TPC is here outlined. Muon tracks stopping
in the TPC and helical electron tracks from muon decay are both
identified and fitted for complete event reconstruction. 3Because
of certain geometrical characteristics of the TPC, novel
techniques are deployed to find the tracks. Normal road tracing
methods do not work reliably; they are replaced by, among other
things, a random searrh technique that locates the helix’s planar
prnjection and a carefully worked-out method for correctly
nutting each coordinate on its proper turn in the helix.

PROBLEMS FACED BY THE PATTERN RECOGNITION ALGORITHMS

My colleague, Wayne Kinnison, has described elsewhere! 1in
some detail what the LAMPF TPC looks like. I shall here briefiy
review the salient features of the TFC with an emphasis on how
those features relate to the special problems any track finding
algorithm must face in eortirg out track topologles.

The readout plane of the TPC consists of 21 identical
rectangular modules. The rectangles are snuggly fitted in a
pattevn roughly circular in shape. With an effective radius of
50 cm, the circular pattern stretches far enough to fully contain
any helical track from muons decaying in the center when the
field is raised to 6.7 kilogauss, the nominal field setting. The
drift length 1is 52 cm. Euch module {8 strung with 15 sense
wires, each wire possessing a retinue of 17 pads linad up cozily
underneath. Une centimeter .eparatas neighboring wires from one
another and also descrihbes the center-to-center pad separation.

But despice the existence of 315 wires and 5355 pads i{n the
system, dead regicns abound. Each module with ite GI0O frame
contributes 39.5X of its total area to the dead regions. These
dead regions meander throughout the whole circular pattern of
modules, complicating the topology for helical tracks (sce
Fig. 1). Any given track, for example, might decide to spend
mos’. of {tes time traveling over Gl0 instead of wires and pads,
more than the 39.5% might suggest.

The dipitizers, with their flash ADC’s and their ability to
record the time evolution of everything a pad senses, permit the
occurrency of coordinates with the same (x,y) but different z's.
Heliocal tracks of nore than one turn, as many turne as can fit in
the drift upace, are fully digitized. This 1is a very fine
feature tor lemrning as much as possible about each track. But
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the algorithus muet be prepared to handle the special demauds
introduced by multiple turning helixes.

Al chough our interest centers on the helical electron track,
we cannot ignore what the incoming muon is doing. Learning about
the muon track serves two useful purposes:

(a) Helps the algorithms .et started on the
electron track.

(b) Leads to the muon’s decay time, whose average
should come out to be 2.2 usec.

The muon enters the TPC nearly parallel to the magnetic
field and, being a degrcded eurface muon, loafs along 8o
leisurely that it stops in the gas. The muor orbit is not,
strictly speaking, a straight line. Multiple s:attering and any
transverse component to the momentum turn the orbit into a fuzzy
decaying helix, especially near the point where the muon atops.
But details of the muon’s orbit concern us not too much. It is
that stopping point that chiefly concerns us.

The muon orbits are prompt, the electron orhits delayed.
That i{s, the trigger counter that senses a muon entering the TPC
starts the digitizer clock going, the clock that counts time
buckets, and that in turn insures correct mcasurements of the
muon’'s 2 coordinates. Ncc so for the electron. The muon sits
there waiting to decay. In the meanwhile ~he clock 1s
re.entlessly ticking off the buckets. It ticks an average of 2.2
usec before the muon decays, a tilme whish in our TPC is
equivalent to 1 z-distance of 14.3 cm. So the z coordinates of
the electron are going to be too big, sometimes by only a little,
sometimes by a lot. This delay of the electrorn, this apparent
drifting up of the helix, must be kept firmly in mind by the
algorithms.

Unfortunately, there is no sure-fire way cf tagging the
coordinates as to particle type. Muons, being more heavily
{fonizing, induce on the average a bigger eignal on the sense
wires than do the electrons., High level discriminators viewing
the central module, vhere &ll the muons congregate, take
advantage of the greater ianduced charge an does the scftware in
looking at the digitized ecignals from the wires. But muon
coordinates can sometimer be tagged as electron coordinates «nd
vice versa. Simple geometrical considerations, like knowing that
only the central module cun mee muons, help to some extent. But
in the ad, only an appeal to topology can sort out who’s really
who .

In Fi{gs. I through 3 I present a typical event fully
reconstructed. Thin example nhows the muon track, marked by the
M’s, and the helical electron track, whose coordinates are
Indicared by X’a or bLoxed X's. For these computer~eye views, the
hefght of the helix has already been adjusted to accommodate the
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Fig. 1. A reconstructed event in the full TPC.
Perupective view, tup view, and side view.
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Fig. 2. Top and side views of tracks in central module.

muon decay time. Ir Fig. 1 I show what the tracks look like in
the full TPC. Figure 2 is & clore-up glance at the central
module, which details the muon track and a piece of the helix.
In the top view the computer drew all the wires but for clarity
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Fig. 3. Top view of helical track in threc of the modules.

none of the pads. Figure 3 shows top views of three of the other
modules over which the helix sweeps. Again the wires are shown,
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but in addition some of the pads, the ones that 1lit up, are
indicated by the hexagons, whose areas are proportional to the
induced charge.

The algorithms face other hurdles. Coordinates that should
have been present may be missing: In hardware the wire may have
failed to fire; 1in software the algorithm reconstructing
coordinates may have rejectad the wire turn-on. Or there may be
extra coordinates. Multiplexer ambiguities can sntribute
spurious ones. Others may result from real but unwanted tracks
like cosmic rays. Finally, there are Iimprecisely determined
coordinates, coordinates displaced from where they should be.
Imprecise coordinates put a somewhat greater strain on the
algorithms. Tube sizes about tentative roads through the chamber
must be maintained larger than they would otherwise need to be
with a higher probability of finding a wrong solutiou to the
topology or missing it altogether.

The following discussion covers four topics: How the muon
track is found, how the helix track is found, how the helix is
fitted, and finally how muon track and helix are put together to
yield the full topology.

MUON TRACK FINDER

The algorithm that searches for the muon track starts ori
with a pessimistic assumption: Because of possibly wrong tagging,
any coordinate found in the fiducial reglon might turn out to be
the last coordinate on the muon orbit. The fiducial region is
that volume in the chamber where, according to the trioger, the
muon 1s rupposed to stop., The algorithm takes every point in the
fiducial volume, regardless of its initial tagging, and tries to
construct a muon track on that point, one stopping there. In the
end the algorithm winds up with a clutch of muon track
candidates, one of which should be the true one. The candidates
are ranked in the order in which they are tried in an effort to
find the helix.

How is each candidate found? A blunted cone, its flattened
nnse pointing dcwnward, is drawn about the candidate point lying
in the fiducial volume. The blunied nose has a radius of 1.1 cm,
enough to touch the two neighboring wires. The cone flares out
at the rute of 1 cm for every 5 it gains in elevation. Only
points tagged as muons and scooped un by the inverted cone, as
well as the cundidate point itself at the nose of the cone, are
considered for the candidate track. A straight line 18 fitted to
this initial set of points, then the points are {iterated in a
tube of 1 cm radius; that is, a tube HSf 1 cm radius 1s drawn
about the strajght 1line fit, pointe outside the tube are
discarded, a new fit 1is made, a new tube drawn, etc., until no
more points are tossed out. If after all that the candidate
point has succeeded in getting irself tossed out or 1if there are
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no tagged muon coordinates left, the candidate track is given the
heave. It’s also chucked if its slope 1s not steep enough
(directional cosine must be > 0.9).

One interesting thing: The candidate track need only consist
of a single coordinate, the candidate point that started the
search going. In this case the fictted "track" is a vertical line
drawn through the point. But trom what 1 said in the last
paragraph, the one coordinate must be an already tagged muon.

Now for the order of ranking. Highest honors go to the
candidates with the most coordinates. A candidate that 1s a
subset of the true track is therefore ranked lower, an obviously
desirable feature. Candidates that tie in number of coordinates
are ranked by obliquity: Steeper tracks are given the preference.
Candidates that tle in number and are perfectly vertical (several
one-coordinate candidates, for example) are ranked by how close
they come to the center of the chamber: the closer, the higher
the rank.

In the search for the electron helix, the highest ranked
nuon candidate is tried first. If no helix is found, the next
highest ranked muon candidate is tried, etc., until finally we
have in hand a totally acceptable solution to the topnlogy. Or
until all candidates drop by the wayside. In which case the
event 1s dropped.

HELIX TRACK FINDFR

The search for the helix forms the heart of the problem. By
comparison, finding the muon orbit is only a minor diversion.
Knowing the location of the muon track is helpful in verifving
the topology as a whole, but the real test of the algorithms’
mettle comes when tliey turn their attention to bringing the
electron helix into the light of day.

The algorithms launch a two—phased attack. The first phase
is designed to find the circle, which 1s the helix’s projection
onto the xy-~plane. Having found the circle and fitced it, the
algoritims use the result to unravel ¢ vs. z, where ¢ 1s the
azimuth angle of each coordinate on the circle. At first blush
this second phase seems trivial, that there’s nothing to unravel.
Isn’t » a linear function of ¢ and needs only to be fitted with a
straight 1line? But as I will show later, some of the most
formidable difficulties of all stand iu the way of the solution
to this seemingly trivial problem.

But first the circle finder. Her: the algorithms deploy
strategies which may be unique in the history of track finding.
With the existence of circles of any radius and orientation
superimposeed on our pattern of modules (the only common motif
being that the circles pass through the central module), there is
no clear way of getting a road started in a systematic fashion,
then following 1t. Coordinates of finite precision and their
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closenes: to one another in a module, sudden and large jumps
across dead areas between modules, are apt to derfeat the best
effoc.s at systematic road tracing. The algorithms don’t even
tr- . What they do is pick at random quartets of x,y-points, fit
a circle to each quartet, concoct a single parameter from the
three parameters of the fit, and histogram the result. Many
quartets are chosen, 50 to be exact. The reasoning behind this
procedure 18 simple: Because of the possible existence of
spurious coordinates, some quartets may give wrong results. At
least the algorithms don’t assume that a given quartet will
reveal anything reasonable. But most quartets do; most quartets,
baing a subset of the real circle, yleld parameters that cluster
about some central value. So the problem of finding the circle
is metamorphosed into the simpler problem of searching for a peak
in a histogram.

But don‘t think for one moment that the algorithms accept
every quartet willy-nilly. Each fitted circle must pass certain
tests: The rms cannot be too large, the radius as well as the
center of the circie must be within bounds, the cizcle has to
pass clnse to the place where the muon stopped (or rather, the
stopping point of the muon track candidate under consideration).
This last test is a rather important one, for if there happen to
be two helixes in the chamber, the decay electron and some
unrelated spurious track, this test greatly increases the chances
of the algorithms’ grabbing onto the right track.

In binning the parameter found from fitting each quartet,
the algovithms take some care in selecting the bin size and
number of bins. 1Tt is desirable to have the peak stickiug up
prominently above background and at the same time have a way of
finding its position without doing any fancy fitting. The
algorirthms choose the number of bins to be just equal to the
number of accepted quartets. That makes the average count per
bin be one. 1If in addition the range of the histogram is chosen
to just barely contain the lowest and highest of the parameters,
the bad quartets will scatter themselves more or less unlformly
throughout the whole histogram, with much less than one count per
bin on the average, while the good quartets will concentrate in a
small are:n, perhaps in one or two bins, each bin having many
counts. That makes the chore of finding the peak an easy one.

The algor _thms, in forming the initial set of points for the
circle, draw on the coordirates from the good quartets. The
final set is extracted by iteration in a circular band of a given
width. The set is fitted to a circle, a band of a certain width
is laid around the circle, polnts not belonging to the candidate
muon track but falling in the band form the next set, this set is
fitted to a circle, etc., etc. And so the iterations go until
the algorithms find the same set of points two times 1in
succession or until the set falls below a membership of six
points, in which case the search for the circle is declared a bum
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steer. The half width of the circular band is larger on the
first round, then squeezed tighter once for all subsequent
rounds.

With the circle found, the problem is now ¢ vs. z. For that
I will write down the helix orbit equations we habitually use:

x = a = pcos(ks - ¢_) (1)
v = b + psin(ks - ¢o) (2)
z=2z +us (3)
0.299798,
k= ° (4)
p
p = «“IyT = ugz (5)

The first three equations describe the helical orbit
parametrically in terms of the path length s. The three
parameters a, b, and p refer to the circle and are the location
of the circle’s center and its radius. «, in units of cm'l, is
related to the helix pitch, the distance between turns:

2nju,,, |
pitch = __—Egi- (6)

The parameter ¢, is the initial azimuth angle, related to
the initial (s = 0) directional cosines in x and y:

Uox = -pxsin¢° (7)

Uoy = pKcose, (8)
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The third directional cosine is u 2 How it connects to p
and k 18 shown in Eq. (5), a result that flows from the
requirement that the sum of squares of all three directional
cosines must add up to 1.

For completeness, I have included Eq. (4), which shows how «
relates to the magnetic field B, (in kilogauss) and the momentum
p (in MeV/c).

I shall now recast the helix equations into a different form
by eliminating the path length parameter s:

z =2 4+ A (9
¢ = tan 1Y "D (10}
a - X
u
A = oz _ tpitch (11)
K 2n
Z =2z, + 2\, (12)

Equation (9) is 4it, the ¢ vs. z connection alluded to
earler. With the circle already known (a, b, and p extracted
from a circle fit), the azimuth angle ¢ can be found for every
(x,y) coordinate used in f :ting the circle, then a linear fit to
z performed, the process yielding the two parameters X and Z.
With A found and p already known, the parameters x and u can be
extracted through the auspices of Eqs. (5) and (ll).

But here 13 the rub: Equatior (10), the prescription for
geunerating the azimuth angles, is incomplete. The arctangent at
best creates angles in the range [-n,r], and even that assumes
th2 use of the two-argument arctangent function of FORTRAN fame.
What is missing in Eq. (10) is the 2nn term, where n is the sheet
number of the branch of the helix to which each coordinate
belongs. But a priori, the algoritams do not know the sheet
numbers and there is no easy way of assigning them. Even a short
track making only a fraction of a turn might cross the branch
cut, Ajumping from one sheet to the next suddenly. A plot -€
Eq. (9) 4is not a straight line then but a series »f disjointed
straight lines looking like the profile of a saw blade. That may
not seem so bad at first glance, but you musi remember that the
algorithms don’t see a neat even saw blade, continuous except at
the jumps, but rather chey see discrete points of varying degrees
of precision perching at varying intervals along the saw blade.

oz
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Thanks to the dead regions between modules, the azimuth
separation between adjacent points can be very large, with a
change of sheet number quite likely.

And there 18 an additional complication. Just becaus: a
coordinate seems to fit very neatly on the circle, it doesn’t
follow that the point belongs to the helix, as that marvelous
pattern recognizer, the human eye, might tell you after a quick
glance at the side view. So the elgcrithm assigned to grapple
with the sheet numbers must not be so naive as to assume that
every coordinate found on the circle really belongs.

With the points on the circle arranged in the order of
increasing z, the basic strategy of the algorithm is to feel 1its
way from point to point slowly and carcfully, pausing each time
to decide first whether the point really bulongs and 1if so
whether it makes a jump in sheet number. The algorithm fulfills
its task by performing & running fit to Eq. (9) using the points
already felt, those )oints having had their sheet numbers
determined. Using the fit, the algorithm calculates z for the
next point, with and without a change 1in sheet number, and
compares it to the real z. Three projected z’s are considered,
" one each for sheet changes of 0, -1, and +!. If no projerted =
satisfies the tolerance, currently set at 2.5 cm, the algorithm
chucks the point. Otherwise the point is retained with a sheet
change reflecting the best comparison between real and projected
z.

But getting started —- how is that done? It takes two points
to stirt a road in ¢ vs. z. Bear in mind that however che two
are chosen, one or both "»oin 8 might not belong to the helix and
. 1f they do, they might not dwell on the same sheet. So the road-
tracing algorithm must expect ‘to 'stumble into false starts
occasionally and be prepared to try again.

The algorithm starts by choosing the first point at random
from among the ordered points on the circle. The second point is
chogsen to be the next one in orde-. The advantage of trying twe
neighboring points is that both ure likely to reside on the same
sheet. At any rate, the algorithm starts off assuming the same
sheet number. If that proves wrong (the algorithm soon learns by
losing the road), adjacent gheet numbers can then be triud. If
after that the road still wanders into limbo, the algorithm
shrugs and mutters to itself, "Bad startiig poir.. Probably the
first point or 1its neighbor doesn’'t belong. Better start

somewhere else." And so it does, again with the first point
chosen at random.

FITTING THE HELIX
As can be gleaned from the previcus section, track fitting

forms an inseparable part of track finding. The circle tr found
and fitted before a single z coordinate {8 scrutinized. Than, au
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the algorithm hacks its way through the saw-toothed grass of ¢
vs. z in its search for sheet numbers, it fits z to ¢ at every
opportunity. But nevertheless, many characteristica of the
fitting will be more brightly illuminated if they are pulled out
of their setting and given a separate look.

First, te it noted that there is no unique or even obvious
way of fittinrg a helix. I suppose the mcst "obvious" way would
be to find the shortest distance between each x,y,z-data point
and the helix, treat each minimum distance like a residual, and
ad just the helix parameters to minimize tic sum of the squares of
the residuals, with weights or without. But the best method in
my opinion, because it 1s the simplest, is the 3-and-2 fit: Do
the x,y-view first, a three-parameter fi* to the circle, then
follow it with ¢ vs. z, a two-paremeter fit to get the rest of
the description of the helix. Although closely associated with
the track finding algorithms, the 3-and=2 method owes uothing to
them. The method can be appreclated on its own merits.

First, the circle fift. Uniquen2ss does not seem to be a
virtue here either. One scheme, however, has greater intuitive
appeal over all the others. I shall 1lead up to it by f{irst
considering a more gene'al fitting scheme.

Fitting a circle desuribed by a, b, ¢rd p to a bunch of data
points (x,y) 1involves a least squares sum of some sort of
residuals (1 am dealing with only unweighted fits). Here are the
residuals or interest:

6r, = p" - " (13)

r=vV(x - a) + (y - )2 (14)

where n is any fixed positive number, not necessarily an integer.

Intuitively, the chofce of n = | seems best. &r, is the
uncomplicuted, straight-forward radial residual, the common kiud
of thing that shows wup 1in most least wequares fitting.
Unfortunately, urlike fitting a straight line, the least squares
sum of 6r1 leads to non-linear equations in the parameters a, t,
and p, a not very pretty feature.

However, for n = 2 (and only n = 2), linear equations do
resu't. Or to be rore precisc, the equations are linear in a, b,
and the combination p2 - a2 - b2,

But while n = 2 produces cleaner mathematics, its use {s not
ay {ntuitively persu'sive. So here is what the algorithms do:
Throughout most of the work the n = 2 residuals are used. It is
only when we want final values for the circle parameters that the
algorithms switch to the n = 1 residuals. And the non~linear
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mathematics? Pretty easy at this stage.

The mathemati:s of n = 2

have given good starting estimates for quickly iterating to the

final valves via Newton'’s method (Eq. (19) below).

At this point I shall write down the n = | mathematics. I

do this not only for completeness but alsc to show

how the

mathematics of n=l1 ultimately lead to a calculation o! momentum

resolution.

=~
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Ep = el (20)

0p = ogEL/? (21)

P

The last equation shows how op, the sigma of the n =1
residual distribution, which is approximately Gaussian, relates
to the sigma of the error distribution for p, the radius. The
connection, E_, is the error matrix element. I call the latter
the geometrical factor. The quantity op, which depends on the
details of coordinate reconstruction, is treated in this analysis
as a universal constant. All helixes have it. Not so E . That
quantity depends on the geometry of the helix under study. Some
helixes have a large E_, others a much smaller one. And so ¢
also reflects the geometry: o_ describes the (almost) Gaussian
way the error in p distributes itself under a specific set of
geometrical considerations. Charge the geometry and the width of
the distribution changes accoirdingly.

With the results of the circle fit 1in hand, the two-
parumeter fit of ¢ vs. z can be performed. The algorithm chooses
te perform the fit by invoking the least squares sum of the z
residuals, a straight-forward procedure once ths sheet numbers
are assigned. I now write down a series of equatiuvns paralleling
Eqs. (15) through (21), showing the mathematics of he fit:

hy = J1
hy = 201
hy = Joi (22)
ty - Iz
ty = Iey2y (23)

How (nl hz) (24)
hz '\3
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E=Hl= fe e (25)
02 03
(1))
A ts
Ey = ey (27)
oy = 0,E}/2 (28)

Like Eq. (21), the last equation shows how o0,, the sigma of
the z residual distribution, also nearly Gaussian, connects to
the sigma of the error distribution 1in A, the helix pitch
parametcr. The connection is again an error matrix element,
another geometrical factor. For like o;, o, 1is essentially a
universal constant while E, varies rrom helix to helix, just as
Ep does.

I am now in a positiun to write down the complete error
natrix results for the momentum and angle resolutions. For that
purpose I will let p stand for u__, the cosine of the elsctron’s
angle of emission. Through the auspices of Eqs. (21) and (28), 1
can write down the sigmas for r and u:

. 0c2/STE Iy '
Op = Px 7o Looﬁ + A h)oi (29)

o, = pt3/A‘Epoﬁ +457EA037 (30)

This then completes the fitting of the helix.
PUTTING TOGETHER THE COMPLETE TOPOLOGY

Finding the heiix does not automatically end the job. The
helical track must be reconciled with the muon track candidate.
Already some reconciation exists asince in the search for the
helix the algorithms have forced a certain coziness between the
x,y-projection of the helix and the muon track’s end point. But
that is not enough. The end point might be wrong or the haelix
ill=-found in some way. More teuts need to be made. And there
are some rather easy ones waiting in the wings. These tests are
baned on a very simple observation:
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The coordinates fittad to the helix must in the end all lie
either above or below the muon’s end point and none must stick
out of the TPC.
T "Why do 1 say "in the end"? Because muons are prompt,
electrons delayed. At the time the helix is firset reconstructed,
it 1is in the wrong place. It is up too high, a distance
equivalent to the time the muon sat around waiting to decay. To
test the topology, we must move the helix down to its rightful
place. Or rather, the very act of trying to move it to the right
place constitutes the test.

How 1is the "right" place determined? By moviag the helix
until it comes closest to the end point of the nuon track.

That bare statement needs awuplification. Naturally, it is
perfectly correct to say that the fiitted helix nshould come as
close as possible to the end point since the electron track
originates there. Only finite precision and the munn’‘s finite
decay time sunder electron from muon. But the helix, looked upon
as a mathematical construct, has an infinite number of closest
points, all bearing the same x aud y but disifering in z by one or
more pitches. Moving the helix down until the first of these
points becomes closest may not be enough; the muon may have sat
around longer than that, long enough to allow the helix’s
apparent upward drift to encompass additional pitches.

So the algorithm must deprees the helix that first fraction
of e pitch plus any additional 1integer pitches until all the
helix coordinates reach one side of the muon’s end point or, if
they were all already on the up side, until one more pitch would
split them up. The algorithm 1s not a complete utickler for
this, however. Jecause of finite precision’ 'n the coordinates,
che helix might be left with one nr two points a little over the
border marked by the muon’s end point or a little out of the
TPC’s end planes. Under certain conditions, it is even pussible
that the helix might find itself raised a little. This can
happen when the muon’s end poiat {s alreldy quite close to a
helix loop, the end point being a little above by s small
fraction of a pitch, and othear conditions forbid a downward
movement of the helix.

The known drift velocity snd the dimtance the helix has to
be depressed disclose how long the muon lived. A histogram of
that over many events should look like an exponential with a
decay time of 2.2 psec, which, {f {t does, serves as a quick and
sinple overall test of how well the algorithms are doing their
Jobs. 1n Fig. 4 I present guch a histograi.. The average decay
time {s indeed quite clome to 2.2 psec.

Of all the problems the algorithms run into, the bhiggent
faliling res{des in the matching of the muon track to the heiix.
The reasons for that are pretty clear: the paucity of muon
coordinates in a typical event, muon coordinates wrongly
identified, the stringent requirements for matching. The
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Fig. 4. Muon decay time.

algorithms purposely make matters tough based on the philosophy
that it 1s better to miss the solution entirely than to grnb onto
a wrong one. Of course it can be argued that, as far as
{ntroducing biases into the Michel apectrun goes, missed
solutions ore surely as bad as wrong ones. Eut the likeliest
reason for missing the boat in the case of a failure tuv match
muon to electron centecrs on the muon. An event with a wrongly
found muon track smells very similar to a trigger inefficiency as
far as the event’s final dispusition is concerned. And a muon
that fails to trigger the TPC has no bias associated with it; the
reason for falling to trigger {is probably unrelated to the way
the muon emits the decay electron.

With the successful re=-positioning of the helix, the
analysis of the topology is complete.

PERFORMANCE, RESOLUTION, AND ACCEPTANCL

To ask the question, How well do the algorithms perform?
would have little relevance without some mention of the TPC'e
resolutfon and acceptance., Certain topologles, like electrons
emitted very far forward or Dbackward, generate too few
coordinates for a helix fit and hence cannot be done. Other
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topologies turn out to be only marginally doable; such a catagory
includes some types of flat tracks =- marginal because of
multiplexer ambiguities. Still others can be done reliably but
produce imprecise measurements of the momentum; helixes with few
coordinates or a small turning angle are that type.

So the question should read: How well do the algorithms
perform in a cut domain, those regions of the TPC blessed with
doable topologies and good resolution? The answer is: Quite well.
Indeed, when you congider that our understanding of the TPC is
still in the preliminary stages and that we have yet to complete
the instrument’s calibratic», the algorithms do remarkably well.
Figure 5, which shovs the Michel spectrum, bears out that
asgessment. In looking at the figure, two salient featuras leap
to the eye. One 1is how closely the solid line noses after the
data. That curve was calculated from the V-A theory of wuuon
decay with resolution and acceptcance folded in (radiative
corrections are not included, however). The agreement between
calculated curve and data demonstrates that, despite our
currently limited understanding of the TPC, we can handle the
cuts pretty well. The second striking feature (s the sharpnrss
of thc Michel edge. That sharpness speaks unambiguously of the
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Fig. 5. The Michel spectrum over the cut TPC.
Solid line {8 V=A theory with acceptance and resolution.
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quality of the momentum resolution we are currently seeing in the
TPC., A direct measurement of the momentum resolution over the
observed Michel spectrum i3 shown in Fig. 6. The quantity &p/p
is calculated by the error matrix method described in the last
section. The resolution averages to a value of 0.7%.

As our .understanding of the TPC deepens, so will matters
like resolution and acceptance impreve. At the present time we
are far from achieving the precision in pad interpoiation we
would like to see. Corrections like the E cross B effect nave
yet to be studied and applied. That we see already as good a
momentum resolution as we do speaks eloquently ol rthe TPC's
inherent capability of measuring momenta well. That fine
capability automatically springs from built=-in geometrical
factors: many samplings of the orbit spread over one or more
helical turns.

The acceptance we are achieving at the present time, an
acceptance based on one magnetic field setting, the field that
keeps electrons of 52.8 MeV inside the chamber -- that acceptance
is 1/3. The accentance should also {improve as we come to
understand the TPC better, although tne acceptance will never
reach 100%. Yet, through the use of different magnetic fields,
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Fig. 6. Mcaentum resolution (§p/p) for ohmerved
Michel spectrum.
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topologies now hard or fmpossible to get should become doable
with good resolution. It may come tc pass that we will be able
to overlap acceptarce ianges through the use of different field
settings and in erffect achieve an acceptance approaching 100%.

One final question could be asked: How fast are the
algorithms? On the VAY it tukes about one second of CPU time to
analyze an event. Now, that 1inciudes everything, the track-
finding algorithms as weil as things like the algorithm that
constructs coordinates from the raw digitizer data. So all I can
say is that the algecrithms discussed tiere take less than a second
on the VAX (on the cvurage) tc raconstruct a topology.

CONCLUS iunS

Within the domain defined by doable topologlies and good
momentum resolution, the track finding algorithms for our TPC, as
things now stand, do quite well. The biggest failing resides in
the marching of helix to muon, and we think that such failings,
in that they throv out events rather than reconstruct them
wrongly, act like o trigger inefficiency as far as introducing
blases are coucernel. Many rother novel features are employed to
help unravel the topologies, incluaing a random number generator
for searching for the helical track’s planar projection. Also
employed are a shotgun approach for locating the muon track and,
in the cuase »f the helical gcide view, a carefu’ly thought=-out
procedure for extracting the correct branch of the helix to which
each coordirate belongsa.

One {1inal comment. The empliasis here i3 on the fact that we
have devdldped a''WworRilg scheme of track reconstruction, not a
final ore. Much ws>rk has to be done 1in understanding and
calibrating the TPC. By extension, the preliminary status of
matters reflects on the algorithms. As our understanding
deecpens, 8o too will the algorithms change to reflect that
understanding. But in the round, the basic ideas presented here
will not, 1 suspect, change.

W. W. Kionison, "A TPC Spectrometer for Measuring the et Spectrum
in y Decay" (Proceedings, this conference).



